

Insects : As bioindicators

Supriya Guruprasad
EWRG, CES
IISc
supriya@ces.iisc.ernet.in

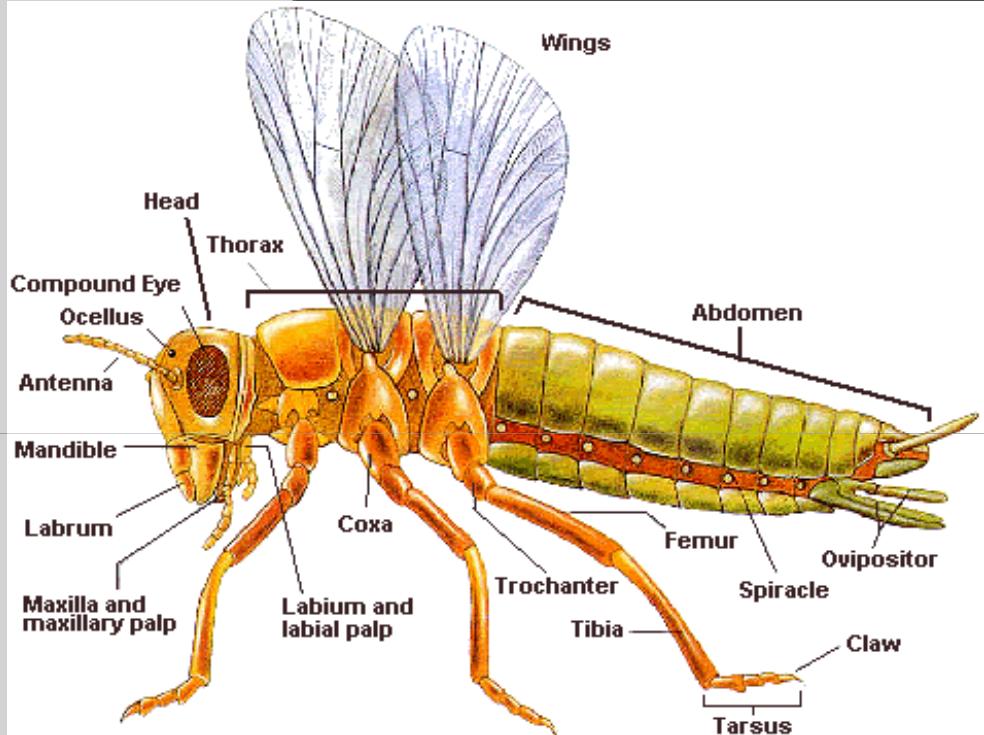
What are insects?

- Insects are the most species-rich form of animal life on Earth due to their ability to adapt
 - Morphologically and
 - Behaviorally to specific environments
- It is estimated that there are 1.5 million to 30 million around the world.

Classification

Kingdom : **ANIMAL**

Phylum: **ARTHROPODA**


Class: **INSECTA**

- Generally sub divided into 29 orders

ORDER	COMMON NAME
1. Thysanura	Bristletails
2. Diplura	Two-pronged Bristletails
3. Protura	-
4. <u>Collembola</u>	Springtails
5. <u>Ephemeroptera</u>	Mayflies
6. <u>Odonata</u>	Dragonflies
7. <u>Plecoptera</u>	Stoneflies
8. Grylloblattodea	-
9. <u>Orthoptera</u>	Crickets, Grasshoppers and Locusts
10. Phasmida	Stick and Leaf Insects
11. Dermaptera	Earwigs
12. Embioptera	Web-spinners
13. Dictyoptera	Cockroaches and Mantids
14. Isoptera	Termites
15. Zoraptera	-

ORDER	COMMON NAME
16. Psocoptera	Psocids or Booklice
17. Mallophaga	Biting Lice
18. Siphunculata (= Anoplura)	Sucking Lice
19. <u>Hemiptera</u>	True Bugs
20. Thysanoptera	Thrips
21. <u>Neuroptera</u>	Alder Flies, Snake Flies and Lacewings
22. Coleoptera	Beetles
23. Strepsiptera	Stylopids
24. Mecoptera	Scorpion Flies
25. Siphonaptera	Fleas
26. <u>Diptera</u>	True Flies
27. <u>Lepidoptera</u>	Butterflies and Moths
28. <u>Trichoptera</u>	Caddis Flies
29. <u>Hymenoptera</u>	Bees, Wasps and Ants

External Anatomy

Three major body regions:

- Six legs
- One pair of Antennae
- Usually two pairs of wings

What is biomonitoring?

“Since water pollution is essentially a biological problem, making chemical measurements will be like taking snapshots of the ecosystem, whereas biological measurements will be like taking a videotape”

Why insects as a bioindicator?

- (1) common, diverse and abundant groups**
- (2) ubiquitous incidence favors comparative studies**
- (3) life cycles in wetlands**
- (4) taxonomy is well studied**
- (5) stationary nature help to determine the result of pollution**
- (6) react with a range of sensitivities to numerous kinds of stressors**
- (7) crucially important for the overall functioning of wetland ecosystems**
- (8) routine monitoring can be relatively inexpensive**

Parameters that affect Aquatic insects

- Change in pH level
- Change in Dissolved oxygen level in lakes
- Phosphates and nitrates content

Morphological Adaptations to Aquatic Environment

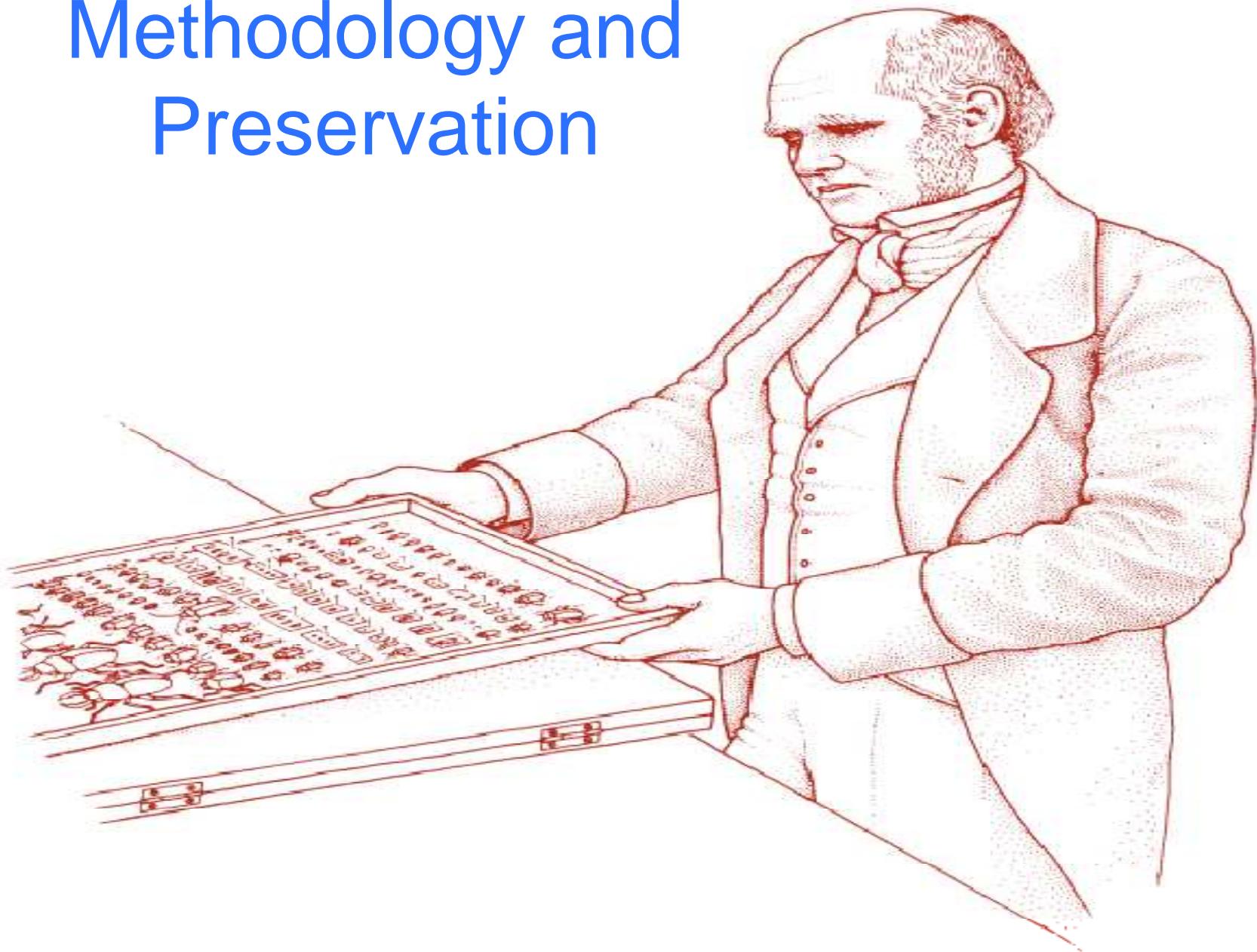
Burrowers:

- Broadened fore legs
- Shovel-like head processes

Floater:

- Buoyancy organs
- Swallow air bubbles

Swimmers:


- Often green if cling onto vegetation

Sprawlers:

- Camouflage using sediments in setae

Methodology and Preservation

(P.J. Gullan and P.S. Cranston, *The Insects: An Outline of Entomology*. © 2005, Blackwell Publishing Ltd)

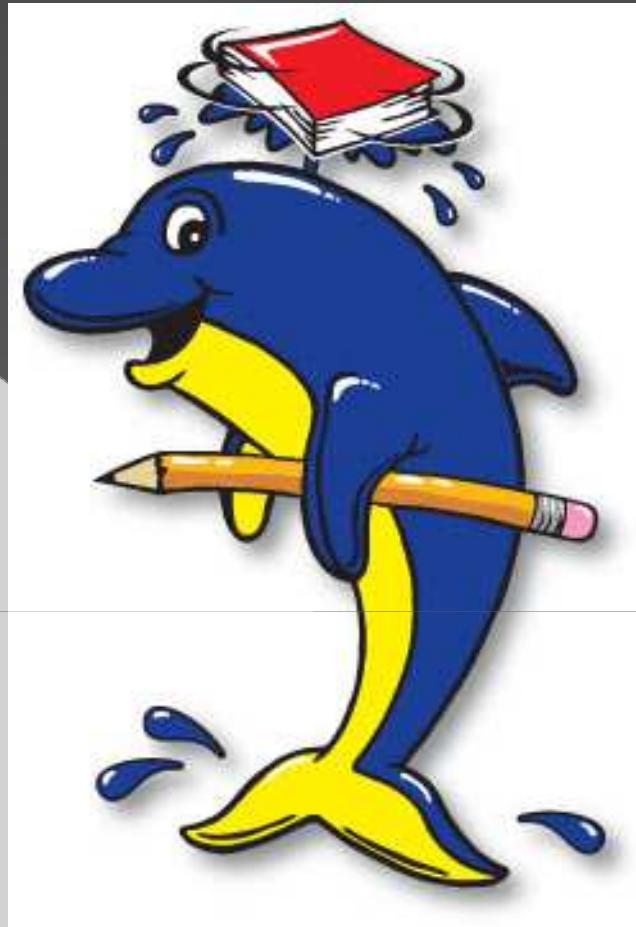
Analysis

- Identification of the segregated sample under a stereo-zoom microscope.
- Carrying out the required statistical analysis as per your objective.

A case study: Bangalore lake

Malathahalli lake

Physico – chemical parameters


	Malathahalli
pH	9.98
DO(mg/l)	9.04
Nitrates(mg/l)	0.07
Phosphates(mg/l)	0.08

Order	Abundance
Hemiptera 1	289
Hemiptera 2	1
Hemiptera 3	1
Diptera	1
Hemiptera 4	4
Odonata 1	12
Odonata 2	1
Hemiptera 5	1
Odonata 3	2
Coleoptera	6

Conclusion

- Dominant insect order - Hemiptera
- Tolerate wide ranges of pH and DO. Life doesn't depend entirely on water quality. Some remain under water.

Thank you

supriya@ces.iisc.ernet.in